3rd November 2021

Causal Injection into Neural Networks

ACM ICAIF'21: Workshop on XAI in Finance

Fabrizio Russo & Francesca Toni

Imperial College London Outline

Introduction & Background

2 Algorithm 1 - Inject Causal Knowledge

Algorithm 2 - Refine & Inject DAG: A Credit Risk Case Study

4 Conclusion

Introduction & Background

Motivation

• In finance many hard problems are tackled with models (e.g. fraud, pricing, credit scoring, trading, planning etc.)

Motivation

- In finance many hard problems are tackled with models (e.g. fraud, pricing, credit scoring, trading, planning etc.)
- Practitioners often have a lot of domain (causal) knowledge

Motivation

- In finance many hard problems are tackled with models (e.g. fraud, pricing, credit scoring, trading, planning etc.)
- Practitioners often have a lot of domain (causal) knowledge
- Regulation is quite strict in requiring model stakeholders to understand and "own" their models

Motivation

- In finance many hard problems are tackled with models (e.g. fraud, pricing, credit scoring, trading, planning etc.)
- Practitioners often have a lot of domain (causal) knowledge
- Regulation is quite strict in requiring model stakeholders to understand and "own" their models
- Machine Learning models (e.g. Neural Networks) do not easily allow knowledge integration nor interpretation

Motivation

- In finance many hard problems are tackled with models (e.g. fraud, pricing, credit scoring, trading, planning etc.)
- Practitioners often have a lot of domain (causal) knowledge
- Regulation is quite strict in requiring model stakeholders to understand and "own" their models
- Machine Learning models (e.g. Neural Networks) do not easily allow knowledge integration nor interpretation

Causal Injection into Neural Networks

Introducing causality into neural networks not only makes them more **robust and reliable**, but it is also a step towards their **interpretability**.

Formal Set-up

• Let X_1, \ldots, X_d be the set of *input features* and Y be the *target feature* within a regression or classification setting

• $f_Y : \mathcal{X} \to \mathcal{Y}$

Formal Set-up

• Let X_1, \ldots, X_d be the set of *input features* and Y be the *target feature* within a regression or classification setting

• $f_Y : \mathcal{X} \to \mathcal{Y}$

- Causal Structure is a DAG $\mathcal{G} = \langle V, E \rangle$ (Pearl 2009)
 - $V = \{Y, X_1, \dots, X_d\}$ the set of vertices
 - $E \subseteq V \times V$ the set of edges

Formal Set-up

- Let X_1, \ldots, X_d be the set of *input features* and Y be the *target feature* within a regression or classification setting
 - $f_Y : \mathcal{X} \to \mathcal{Y}$
- Causal Structure is a DAG $\mathcal{G} = \langle V, E \rangle$ (Pearl 2009)
 - $V = \{Y, X_1, \dots, X_d\}$ the set of vertices

•
$$E \subseteq V imes V$$
 the set of edges

•
$$v_i = f_i(pa_i, u_i)$$

- v_i is a value for $V_i \in V$ with parents Pa_i having values pa_i
- f_i any function
- *u_i* representing the errors due to omitted factors

Background

- Causal Structure Learning (CASTLE by Kyono, Zhang and Schaar 2020) use a causal discovery method to regularise neural networks
 - A *joint* neural network learns the causal DAG underpinning the data as an adjacency matrix while predicting / reconstructing every feature

Background

- Causal Structure Learning (CASTLE by Kyono, Zhang and Schaar 2020) use a causal discovery method to regularise neural networks
 - A *joint* neural network learns the causal DAG underpinning the data as an adjacency matrix while predicting / reconstructing every feature
- Issue is: CASTLE prefers using parents to children and siblings, but it is not **guaranteed** to do so.

Background

- Causal Structure Learning (CASTLE by Kyono, Zhang and Schaar 2020) use a causal discovery method to regularise neural networks
 - A *joint* neural network learns the causal DAG underpinning the data as an adjacency matrix while predicting / reconstructing every feature
- Issue is: CASTLE prefers using parents to children and siblings, but it is not **guaranteed** to do so.

Can we make sure a neural network complies with a given DAG?

Imperial College London Synthetic Data Example

Figure 1: (a) Example DAG from Kyono, Zhang and Schaar 2020. (b) Adjacency Matrix produced by CASTLE when fitted to the synthetic data produced following the DAG to the left.

 X_0

0.005

0.018

0.0 0.011 0.01

0.0 0.006

0.0

Algorithm 1 - Inject Causal Knowledge

The Intuition

• **Objective:** have the network use only the relationships contained in the DAG i.e. predict each of the features using only its parents.

	Y	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9
Y	0.0	0.005	0.017	0.008	0.002	0.042	0.02	0.005	0.059	0.05
X_1	0.006	0.0	0.063	0.054	0.068	0.009	0.006	0.013	0.006	0.008
X_2	0.088		0.0	0.022	0.019		0.008	0.011	0.006	0.008
X_3	0.087		0.021	0.0	0.024	0.005	0.107		0.006	0.009
X_4	0.009		0.02	0.023	0.0	0.01	0.013	0.01	0.005	0.005
X_5	0.026	0.006	0.017	0.004	0.004	0.0	0.012	0.002	0.005	0.018
X_6	0.025	0.006	0.008	0.011	0.005	0.017	0.0	0.014	0.002	0.114
X_7	0.029	0.003	0.007	0.011	0.002	0.024	0.029	0.0	0.011	0.01
X_8	0.036	0.002	0.004	0.003	0.004	0.006	0.009	0.006	0.0	0.006
X_9	0.024	0.003	0.003	0.004	0.003	0.005	0.079	0.01	0.004	0.0

Figure 2: Enforce acyclicity and threshold on CASTLE adjacency matrix: $E_{\tau}(\mathbf{W}) = \{(i, k) | w_{ik} > w_{ki} \land w_{ik} > \tau\}$

The Intuition

• **Objective:** have the network use only the relationships contained in the DAG i.e. predict each of the features using only its parents.

Figure 3: Enforce acyclicity and threshold on CASTLE adjacency matrix: $E_{\tau}(\mathbf{W}) = \{(i, k) | w_{ik} > w_{ki} \land w_{ik} > \tau\}$

Joint Network Structure

Joint Network Structure

Algorithm 1 - Inject Causal Knowledge

Algorithm 1 - Inject Causal Knowledge

Algorithm 1 - Limitations & Opportunities

• It requires a complete DAG (covering all variables considered in the problem and the data)

Algorithm 1 - Limitations & Opportunities

- It requires a complete DAG (covering all variables considered in the problem and the data)
- Full causal DAG is rare and often impractical to build

Algorithm 1 - Limitations & Opportunities

- It requires a complete DAG (covering all variables considered in the problem and the data)
- Full causal DAG is rare and often impractical to build
- We propose a second algorithm that involves Subject Matter Experts (SMEs) providing their input

Algorithm 2 - Refine & Inject DAG: A Credit Risk Case Study

Imperial College London FICO/HELOC dataset

- Public *credit risk* dataset from a challenge on explainable ML (FICO 2017).
- 10k observation and 24 features.
- Target Y is the *RiskPerformance* metric: whether a debtor has always paid their dues for the two years after being granted a loan.
- Features include the usual ones e.g. credit score, payment history, search history etc.

Starting Point - CASTLE

ceMostResendadesWBalance **NetFractionRevolvingBurden NetFractionInstal** Num1, des60Ever2DerogPubRec SinceMostRecentIngexcl7days umInstallTradesWBala AverageMin ExternalRiskEstimate NumBank2NatiFradesWHighUtil ion www. stRecentTradeOpen **RiskPerformance** MSinceOldest TradeSo Numina de 1006 en in Last 12M NumTrades90Eve mSatisfactoryTrades NumRevolvhighted MaxDelgEver MaxDelq2PublicRecLast12M PercentInstallTrades PercentTradesNeverDelq

Explore Different DAGs

Figure 4: Change in accuracy and number of edges in the DAG when changing the threshold τ . $E_{\tau}(\mathbf{W}) = \{(i, k) | w_{ik} > w_{ki} \land w_{ik} > \tau\}$

Explore Different DAGs

Figure 4: Change in accuracy and number of edges in the DAG when changing the threshold τ . $E_{\tau}(\mathbf{W}) = \{(i, k) | w_{ik} > w_{ki} \land w_{ik} > \tau\}$

Imperial College London Build DAG Bottom up - au = 0.012

Conclusion

We showed:

- how to introduce causal representation guarantees by making a neural network adhere to an input causal DAG
- that causal injection can drastically reduce the amount of weights in a network while
 - maintaining comparable performance
 - improving robustness and interpretability

Thank You

Questions?

Imperial College London References I

FICO (2017). FICO xML Challenge found at community.fico.com/s/xml. URL: https://community.fico.com/s/explainable-machine-learning-challenge.
Kyono, Trent, Yao Zhang and Mihaela van der Schaar (2020). 'CASTLE: Regularization via Auxiliary Causal Graph Discovery'. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. URL: https://proceedings.neurips.cc/paper/2020/hash/ 1068bceb19323fe72b2b344ccf85c254-Abstract.html.
Pearl, Judea (2009). Causality. Cambridge university press.