
Causal Discovery and Knowledge Injection for
Contestable Neural Networks

Fabrizio Russo a;* and Francesca Tonia

aImperial College London, UK

Abstract. Neural networks have proven to be effective at solving
machine learning tasks but it is unclear whether they learn any rele-
vant causal relationships, while their black-box nature makes it dif-
ficult for modellers to understand and debug them. We propose a
novel method overcoming these issues by allowing a two-way inter-
action whereby neural-network-empowered machines can expose the
underpinning learnt causal graphs and humans can contest the ma-
chines by modifying the causal graphs before re-injecting them into
the machines. The learnt models are guaranteed to conform to the
graphs and adhere to expert knowledge, some of which can also be
given up-front. By building a window into the model behaviour and
enabling knowledge injection, our method allows practitioners to de-
bug networks based on the causal structure discovered from the data
and underpinning the predictions. Experiments with real and syn-
thetic tabular data show that our method improves predictive perfor-
mance up to 2.4x while producing parsimonious networks, up to 7x
smaller in the input layer, compared to SOTA regularised networks.

1 Introduction

Neural Networks (NNs) have proven to be a very effective Machine
Learning (ML) model for solving a wide range of problems [9].
However, it is unclear whether NNs are able to encode the Data
Generating Process (DGP) and the causal structure that governs it,
as shown by their weakness to data perturbation and adversarial at-
tacks [27, 10]. This poses a problem when deploying these models
for high-stakes decisions, like granting credit or parole to individ-
uals [26]. Knowledge injection advocates the integration of human
knowledge, distilled and represented in various forms, with data-
driven models, including NNs (see [30] for an overview). In par-
ticular, it supports complementing the data collected with external
knowledge usually difficult to capture in the data alone. It has been
shown to lead, amongst others, to less data need, improved generali-
sation [3] and interpretability [25]. In this paper, we propose a novel
methodology for rendering NNs contestable by means of knowledge
injection coupled with causal discovery.

In our methodology, knowledge injection relates to the causal
structure extracted using, as a starting point, the CASTLE (CAusal
STructure LEarning) [16] model, which has been shown to produce
NNs better able to generalize to unseen data. For high-stakes de-
cisions this is not enough: humans need to be in control, validate
the models’ recommendations and be able to challenge them. Thus,
our knowledge injection methodology allows humans to inspect and
modify learnt causal graphs iteratively while a disagreement remains
between humans and the progressively refined model. This process

∗ Corresponding Author. Email: fabrizio@imperial.ac.uk.

can be seen as a form of contestation by the human, challenging mod-
els’ outputs while still learning from data.

The need for algorithmic systems to be contestable has been advo-
cated in AI ethics frameworks such as the ones from OECD1 and
ACM2 as well as in regulations like GDPR.3 Contestable AI has
been brought to the attention of AI practitioners (see §2), however
algorithmic methods for contestability are lacking. We contribute to
this landscape by enabling the interaction of Subject Matter Experts
(SMEs) with NNs, aided by causal graphs which can in turn be in-
jected into the models. The causal graphs discovered are shown to
SMEs, who can cut edges deemed anti-causal or explore the most
influential effects using a threshold parameter.

Specifically, we make the following contributions:

● We propose a first algorithm to inject, into feed-forward NNs, ex-
pert knowledge in the form of causal graphs. Following the injec-
tion, the NNs are guaranteed to use only the direct relationships
specified in the graphs, hence adhering to the knowledge captured
therein. This is a key component towards contestability, provided
by our second algorithm.

● We propose a second algorithm for human-AI collaboration on
the causal discovery task with NNs. This algorithm can take the
human feedback on the computed causal graph underpinning the
model predictions at any point of the learning process, as an itera-
tive refinement step for model debugging and understanding.

● We apply our algorithms to real and synthetic tabular data within
regression and classification tasks, showing that injecting knowl-
edge in the form of a graph can improve predictive performance
up to 2.4x while making the models significantly more parsimo-
nious (up to 85% reduction in number of weights of the input
layer). Thus, contesting a NN through its computed causal graph
can increase model understanding without hurting performance.

2 Related Work
Von Rueden et al. [30] propose a taxonomy for informed ML, cate-
gorizing the literature on knowledge injection along three main di-
mensions: knowledge source, representation and integration. These
capture the what and how of knowledge injection. Another aspect
analysed is the why. Our work broadly fits in the taxonomy, under
Expert Knowledge represented by Human Feedback and integrated
through the Learning Algorithm. We contribute two novel elements
to the why and the how of knowledge injection: motivated by the

1 Principle 1.3: https://oecd.ai/en/dashboards/ai-principles/P7
2 Principle 7: https://www.acm.org/binaries/content/assets/public-policy/

final-joint-ai-statement-update.pdf
3 Article 22(3): https://gdpr-text.com/read/article-22/

https://oecd.ai/en/dashboards/ai-principles/P7
https://www.acm.org/binaries/content/assets/public-policy/final-joint-ai-statement-update.pdf
https://www.acm.org/binaries/content/assets/public-policy/final-joint-ai-statement-update.pdf
https://gdpr-text.com/read/article-22/

need to support contestability, we go beyond common incentives
for expert knowledge integration into ML, such as the use of less
data for training, prediction performance boosting and improved in-
terpretability [30] and develop a novel methodology for knowledge
injection empowered by causal discovery.

In our approach, knowledge injection facilitates contestability by
allowing experts to incorporate feedback into models, closing a loop
that begins with showing model results to stakeholders. Contestabil-
ity could be seen as a prerogative of the data subject, the receiving
end of an algorithmic decision [1], who would contest the model
output and, possibly, a rationale thereof. However, extending con-
testability to a wider range of stakeholders, including experts evalu-
ating a decision system and professionals using it, has been recom-
mended [13]. Existing forms of contestability range from structured
interactions and model explanations [14] to normative reasoning and
process modelling [28]. The modality of interaction between the de-
cision system and the “contester” should take into account the nature
of the latter [13]. A data subject contesting a decision (e.g. not being
granted credit) will often need layman explanations, while we focus
on technical experts, providing them with detailed information in the
form of causal graphs to understand and challenge model behaviour.

Our method allows technical experts to contest NNs at any point
of the training, entrusting them to debug the model while validating
the relationships that it is leveraging for its predictions. Human-in-
the-loop (HITL) training usually involves humans in data processing
or annotation [31]. Also, HITL debugging has been proposed to im-
prove NNs used for Natural Language Processing (NLP) tasks (see
[18] for a survey). In particular, [17] proposes FIND, a method to
disable “spurious” filters in a Convolutional NN after showing a se-
lection of filters to practitioners in the form of word-clouds. Instead
of word-clouds, we employ causal graphs and we allow experts to
disable spurious connections between features used in the NN. Our
approach can be seen as a form of HITL contestability and debugging
method guided by causal discovery.

Within the deep learning literature, in particular in the vision and
NLP domains, inductive biases [11] and other strategies, ranging
from architecture design to weights initialisation [3], have been pro-
posed to enhance NNs through domain knowledge. Efforts in this
field have been mainly towards tweaking the loss function or the
hyper-parameters to make the NNs capture known characteristic of
the modelling task [3]. Some works in this space have proposed in-
jection of causal knowledge. Geiger et al. [7] propose Interchange In-
tervention Training (IIT) to induce NNs used in both computer vision
and NLP tasks to have the same counterfactual behaviour of a given
causal model. Zhang et al. [32] propose deep CAusal Manipulation
Augmented model (CAMA), a method that uses inductive biases to
make NNs robust to known manipulations of the input space, within
computer vision tasks. In both [32] and [7] the whole causal model
is given upfront and the induction/injection works by data augmen-
tation. Our method instead (i) focuses on the causal structure only,
without making assumptions on the causal model underpinning the
DGP; (ii) modifies the weights of the model and (iii) involves humans
in the discovery of causal relationships from the data used for a pre-
dictive task. Overall, none of the methods in the literature, to the best
of our knowledge, allow for contesting discovered causal knowledge
and injecting it back into NN in the form of causal graphs.

Beyond providing contestability and integration of expert knowl-
edge, our method also helps in the causal discovery task (see [8] for
an overview of causal discovery methods). Meek [19] is among the
first to introduce background knowledge into the causal discovery
task, however human input has been advocated since the inception

of formal causal models [22]. Our experiments show the benefits of
injecting partial causal knowledge, without hurting and generally im-
proving, predictive performance in the downstream task. Constanti-
nou et al. [5] have investigated the impact of ten different ways to
incorporate prior knowledge on causal discovery for four causal dis-
covery methods. Chowdhury et al. [4] have instead analysed the im-
pact of prior knowledge for one specific method: NOTEARS [33].
This is of particular interest to this paper because the method we
leverage on, CASTLE [16], includes NOTEARS’ acyclicity formula-
tion in its loss function, to induce the discovered graph to be a DAG.
Our experiments show that contesting models by injecting knowl-
edge in causal form helps causal discovery in smaller data settings,
thus confirming the conclusions drawn by both [5] and [4], but in a
novel setting.

3 Preliminaries
Modelling and Causal Set-up. Let X1, . . . ,Xd be the set of input
features and Y the target feature within a regression or classification
setting. Each feature Xk, for k ∈ {1, . . . , d}, takes values in Xk ⊆
R while Y takes values in Y ⊆ R for regression and Y ⊂ Z for
classification. Let X = X1 × . . . × Xd. We denote with fY ∶ X Ð→
Y a function that maps assignments of values [x1, . . . , xd] ∈ X to
the input features onto a value y ∈ Y for the target feature Y . In
practice, fY is learnt from a training dataset D = {(xjk, yj)∣j ∈
{1, . . . ,N}, k ∈ {1, . . . , d}, xj ∈ X , yj ∈ Y} drawn from a joint
distribution of values for input and target features.

As in [23], a causal structure over input and target features is rep-
resented by a graph G, a pair ⟨V,E⟩ with V = {X1, . . . ,Xd, Y } the
set of nodes and E ⊆ V × V the set of edges of G. We define a full
DAG as a causal graph that is directed, acyclic and captures all appli-
cable causal relationships amongst all features. For full DAGs, if an
edge between two features is present (resp. absent), then the features
are (resp. are not) in a causal relationship.

Given the scarcity of full DAGs for real-world applications, we
also use what we call partial causal graphs, of the form Gp =
⟨Vp,Ep⟩ with nodes Vp ⊆ V and edges Ep ⊆ Vp × Vp. Intuitively,
if i, k ∈ Vp but (i, k) /∈ Ep and (k, i) /∈ Ep, then node i is defi-
nitely not causally related to node k; if (i, k) ∈ Ep and (k, i) ∉ Ep,
then i can be a cause of k, but not vice versa. Hence, if a directed
edge is present but the one between the same nodes with opposite di-
rection is absent, then the latter relation is deemed as anti-causal. If
i, k ∈ V ∖ Vp, then both (i, k) and (k, i) ∈ Ep, indicating the lack of
knowledge about any causal relation among nodes i and k. Thus, if
the graph is complete [23], i.e. with exactly Vp = V and Ep = V ×V ,
then we know that all features could be causally related but not in
which direction: NNs are used to aid the decision on the direction.
Overall, our partial graphs compactly represent sets of constraints,
and differ from full DAGs giving instead the causal structure among
all observed features.

CASTLE [16]. Our proposed algorithms build upon the architec-
ture of [16], whose schematic is provided in Fig. 1. CASTLE oper-
ates with a feed-forward NN combining d+1 sub-networks, each with
d input neurons, amounting to all input and target features minus one:
each sub-network masks a distinct element amongst X1, . . . ,Xd, Y .
The output layer of a sub-network with feature F masked in the input
layer, has F as output neuron. Thus, each sub-network is responsible
for reconstructing one feature, without using that feature. All sub-
networks have M + 1 layers, and differ only in the input and output
layers, i.e. layers 2, . . . ,M are shared. Hence, during training, the
hidden layers are optimised to achieve the best performance for all

Y

X1

Xd

⋮

X1

Y

Xd

⋮

Y

X1

Xd

⋮

⋮

⋮

Y

X1

Xk

Xd

⋮

⋮

Input layer Hidden layer(s) Output layer

(X1, Y) ∈ G?Sub-
Network 1

Sub-
Network 2

⋮

Sub-
Network
d + 1

Figure 1: Joint Neural Network Structure. Darker arrows refer to the
highlighted Sub-Network 1, predicting Y (Output layer), while hav-
ing Y masked (grayed out in Input layer). Green arrows represent the
weights that we consider masking when injecting causal knowledge
answering questions like: “is X1 a parent of Y ?”.

sub-networks at the same time, thus encoding the structure of the
interactions among all features [16].

We refer to the feed-forward NN, with all its sub-networks, as the
joint NN. We refer to weights for layer l ∈ {1, . . . ,M} as Θl, where
Θi,j

l is the weight from neuron i in layer l to neuron j in layer l + 1.
Θi,j,k

1 stands for the weight from input neuron i in layer 1 to neuron
j in the first hidden layer of the k-th sub-network.

The joint NN carries out both the prediction of the target fea-
ture and the reconstruction of the input features. To train the NN,
like [16], we use back-propagation and stochastic gradient descent
applied to a loss function that includes a causal discovery element
borrowed from NOTEARS [33]. More precisely, the loss is formed
by two modules: the prediction loss and the DAG loss. The former
is Mean Squared Error (MSE) or cross-entropy loss for regression
and classification, respectively. The DAG loss is from [33] and can
itself be broken down into three components: the reconstruction loss,
MSE for each sub-network’s output, assuming they are continuous;
the acyclicity loss, a term that is 0 when W (described next) rep-
resents a DAG (from Theorem 1 of [33]); and finally an L1 loss to
induce sparsity in the weights’ matrix.
W is a square hollow matrix of order d+1 holding a non-negative

weight for each feature, including the target, from and towards all the
others. The (i, k)-th entry of W, for any i, k ∈ {1, . . . , d+1}, results
from the square root of the sum of squared input layer weights across
the hidden neurons. We denote the entries of W as wik. Formally,
for h the number of hidden neurons in the first hidden layer:

wik =
¿
ÁÁÀ h

∑
j=1
(Θi,j,k

1)2 (1)

Given the standardized input data, wik represent the magnitude of the
effect that each feature i has on k. However, as discussed previously,
W assumes causal connotations due to the acyclicity part of the loss
function, which induces W to represent a DAG.

4 Methodology
In this section we first introduce our algorithm to inject causal knowl-
edge in the form of a graph into feed-forward NNs (Alg. 1). The abil-
ity to make the NN respect external assumptions about the structure

of the data, as afforded by Alg. 1, represents a key step in making
NNs contestable. The contesting process is then provided in Alg. 2,
which enables practitioners to challenge the recommendations of the
NN, based on the causal graph discovered while computing them.
Alg. 2 uses Alg. 1, to inject practitioners’ feedback into NNs.

The Graph Injection Algorithm. Alg. 1 takes three main inputs:
a training dataset D, a joint NN with weights Θt, which can be ran-
domly initialised or already fitted on D, and a causal graph G. The
input graph G can take two forms: a full DAG, or a partial graph.
In practice, having a full DAG is rare, hence we allow for G to be
a partial graph (see §3), representing hard causal constraints while
allowing the discovery of additional causal relations.

The output of Alg. 1 amounts to a masked joint NN with weights
ΘG , which only uses the relationships contemplated in G: we call
this an Injected NN. The injected NN resulting from Alg. 1 is fit-
ted, or tuned if the input NN has already been fitted, to use only the
relationships that were deemed causal by including them in G. The
injection is achieved through the masking of the weights of the in-
put layer without a counterpart in the input DAG, namely (i, k) ∉ E
means that Xi cannot cause Xk, hence Θi,j,k

1 = 0 ∀j ∈ {1, . . . , h}
(see line 4 of Alg. 1) which results in wik = 0. The update func-
tion represents a back-propagation pass and will iteratively refine
the NN’s weights to be effective in the prediction and reconstruc-
tion tasks without using spurious anti-causal relationships. The final
weights ΘG of the injected NN result from progressive changes, for
a number of steps that is at most T , if a patience threshold Ts < T of
loss improvement on the validation set is not reached.

Computationally, the main difference of Alg. 1 from CASTLE’s
training loop is that our algorithm focuses the training on the weights
for the accepted edges, i.e. the causal relationships. Another way of
understanding this process is as a “selective” causal dropout method.
Intuitively, the original CASTLE methodology regularises the un-
derlying NN so that the fitted model uses causal parents more than
children and siblings for its predictions. Instead of only preferring
the use of parents, our Alg. 1 enforces it: we reconstruct each feature

Algorithm 1 Inject Causal Graph

Input: Training Data D; NN with M layers, h neurons in the first
hidden layer, trained for t steps with final weights Θt; max number
of steps T ; patience Ts < T ; causal graph G=⟨V,E⟩
Function: inject_graph(D,Θt, T , Ts,G):

1: for i ∈ {1, . . . , d + 1}, fork ∈ {1, . . . , d + 1} do,
2: for j ∈ {1, . . . , h} do
3: if i, k ∈ V & (i, k) ∉ E then
4: Θi,j,k

1,t+1 ← 0 ▷ mask anti-causal relations
5: else
6: Lbest, ts ←∞,0
7: while t < T & ts < Ts do
8: Θi,j,k

1,t+1←update(Θ
i,j,k
1,t ,D) ▷ causal relations

9: Θm,t+1←update(Θm,t,D) ∀m∈{1, . . . ,M}
10: t← t + 1
11: if Lt < Lbest then
12: Lbest, ts ← Lt,0
13: else
14: ts ← ts + 1
15: ΘG ← Θt

16: return ΘG

Output: Injected NN with weights ΘG

Algorithm 2 Contest Computed Causal Graph

Input: Training Data D; NN with M layers, h neurons in the first
hidden layer, trained for t steps with final weights Θt; number of
total training steps T ; patience Ts < T ; Expert Knowledge
Function: contest_graph(D,Θt, T, Ts,Expert Knowledge):

1: contested, τ ← True, 0
2: while contested = True do
3: G ← gτ(WΘt)
4: Gr, τ ← revise_graph(G,Expert Knowledge)
5: if Gr ≠ G then
6: Θt ←inject_graph(D,Θt, T, Ts,Gr)
7: else
8: contested← False
9: ΘG ← Θt

10: return G, ΘG
Output: Refined DAG G and Injected NN with weights ΘG

and carry out the target prediction using only each feature’s parents.
With this restriction, we aim at avoiding the use of a feature’s chil-
dren and/or siblings that may have unstable relationships with the
parent feature being predicted: a change in a children/siblings will
not necessarily change the feature, while a change in a parent of the
feature will. Effectively, we encode the answers to causal questions
into our masking scheme. An example of such questions is in Fig. 1:
does the edge from X1 to Y belong to our agreed causal structure G?
If not, we set the corresponding weights to 0 and prevent the effect
of X1 on Y . Note that we mask inputs and therefore direct effects
while leave indirect effects to be captured by the hidden layers.

The Contesting Algorithm. Alg. 1 enables the injection of a graph
representing the structural relationships among all or a subset of the
features used by a NN to predict a target. With Alg. 2 we expose,
in the form of a graph, the relationships that the NN has found in
the data so that practitioners can critique and contest the output. We
then use Alg. 1 to close the “contestation loop” and incorporate the
human feedback into the NN. Alg. 2 has the same inputs as Alg. 1,
apart from the input graph G which is replaced by what we call Ex-
pert Knowledge. This represents knowledge external to the data, and
provided by SMEs that have prior experience with the modelling
task. To leverage this external knowledge, we need to engage with
the SMEs and we do so by means of the causal graph underpinning
CASTLE’s predictions. After calculating the adjacency matrix WΘ

from the joint NN’s weights Θ using Eq. 1, we transform it into a
DAG G = gτ(WΘ) using the following equations:

Eτ(WΘ) = {(i, k)∣wik > wki ∧wik > τ} (2)

gτ(WΘ) = (V,Eτ(WΘ)) (3)

Eq. 2 is a simple “edge creation function”, applied to the adja-
cency matrix to produce the edges of a DAG with nodes V =
{X1, . . . ,Xd, Y } as per Eq. 3. In general, the threshold τ ≥ 0 is
meant to cut out the uninfluential relationships in the data. Thus,
setting τ = 0 results in treating all identified relationships, as rep-
resented by the elements wik of WΘ, as influential.

Having extracted a DAG G from the joint NN, using Eq. 1 to 3
with τ = 0, we present it to the SMEs for them to assess it, through
the revise_DAG function. The output of this revision by the SMEs
can be in regard to the threshold τ , to cut out more or less of the least
influential effects, and/or in regard to specific edges in the computed
DAG G, resulting in the graph Gr . As visible from the pseudo-code

in Alg. 2, we propose an iterative contestation process, that outputs a
revised causal DAG and a NN adhering to it, when the SMEs agree
with the computed DAG, given the constraints they imposed.

SMEs are given the possibility to contest some or all of the rela-
tionships in the the DAG learnt from data and previous incorporated
feedback, at any point of the learning process. This aims at assist-
ing practitioners in validating and rectifying the causal relations dis-
covered from the data, effectively debugging the NN based on its
weights’ structure. In the next section, we provide a case study on
real data demonstrating how a practitioner can use our contesting al-
gorithm to build more principled and predictive NNs.

5 Empirical Evaluation
We carried out two sets of experiments, on real and synthetic data,
to assess the benefits of our proposed methods. Firstly, we present
a case study on real data (§5.1), exemplifying the benefits that our
methodology provides to modelling tasks in high-stakes decisions,
when practitioners need to validate the relationships that the model
is leveraging for its recommendations. Additionally, we provide ex-
periments with synthetic data (§5.2) which, in line with [4, 5], show
that prior knowledge helps the causal discovery for low data regimes,
further motivating the importance of causal knowledge injection. De-
tails of the implementation, including code, are in Appendix A.

5.1 Case Study with Real Data

We use real financial data from four publicly available datasets (see
details in Appendix A.1): two classification and two regression tasks.
For the classifications, we use the Adult Income dataset [15], useful
for affordability checks in the lending business to predict whether
a loan applicant’s income is greater than USD50K and the FICO
HELOC data [6] for credit risk assessment, to predict whether an
applicant is likely to repay a loan. The two regression tasks are in-
stead about predicting house prices: we use the Boston [12] and Cal-
ifornia [21] Housing datasets. We report analysis for three scenar-
ios using Alg. 2: reconstructing a full DAG via threshold τ opti-
misation, with no prior causal knowledge, to then inject it into our
NNs (§5.1.1); injecting partial a priori causal knowledge express-
ing basic common sense assumptions for the Adult dataset (§5.1.2),
and showcasing how practitioners can contest the DAG computed in
§5.1.1 using the assumptions adopted in §5.1.2 (§5.1.3). In the ab-
sence of a true DAG for these datasets, our quantitative metric is
predictive performance, namely MSE for regression and Area Under
the Curve (AUC) for classification. All results are reported with ob-
served significance levels for a two-tailed two-sample t-test (details
of the testing procedure is reported in Appendix A.1.1). Our objec-
tive is demonstrating that predictive performance is not necessarily
impacted by knowledge injection which can, in turn, help building
more transparent and validated models.

5.1.1 No a priori Knowledge

In this first scenario we assume no a priori causal knowledge, and
use Alg. 2 to construct potential DAGs by optimising the choice of
threshold τ , to then inject them into the NNs and measure the predic-
tive performance with and without injection. Within the gτ function
from Eq. 3, used at the beginning of Alg. 2, we tried between 10 and
15 different thresholds τ for each dataset and chose the “best” DAG
through the evaluation of the change in predictive performance. For
each dataset, we selected the DAG with lowest MSE/highest (AUC)
and, as tie breaker, the lowest number of edges in the computed DAG.
Details of this evaluation are in Appendix A.1.2.

Table 1: Experiments with real data. We report mean MSE or AUC (std) for regression and classification, respectively, across different sample
sizes of the training data (N) and 5-fold nested cross validation, best results in bold. Observed significance levels against CASTLE baseline
are reported with the following intervals: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. NA indicates a data size bigger than the full dataset. We
also detail the number of features/nodes ∣V ∣ and the number of edges ∣E∣ in the injected DAG (for our method) and in the graph drawn from
the extracted adjacency matrix (for CASTLE). Injected columns refers to §5.1.1, Partial to §5.1.2 and Refined to §5.1.3.

CLASSIFICATION (Metric: AUC) REGRESSION (Metric: MSE)
Adult (∣V ∣ = 14) HELOC (∣V ∣ = 23) California (∣V ∣ = 8) Boston (∣V ∣ = 14)

Data CASTLE Injected Partial Refined CASTLE Injected CASTLE Injected CASTLE Injected
(N) ∣E∣ = 210 ∣E∣ = 46 ∣E∣ = 116 ∣E∣ = 30 ∣E∣ = 552 ∣E∣ = 85 ∣E∣ = 72 ∣E∣ = 31 ∣E∣ = 182 ∣E∣ = 48

100 0.67 (0.03) 0.69 . 0.66 0.69 . 0.75 (0.02) 0.74 7.05 (12.81) 2.94 *** 112.04 (91.06) 86.17 ***
500 0.72 (0.04) 0.74 * 0.71 0.74 * 0.79 (0.01) 0.78 *** 2.33 (1.39) 2.25 21.95 (6.84) 20.45 *

1000 0.75 (0.03) 0.76 0.74 0.76 0.78 (0.01) 0.78 2.96 (4.12) 1.68 ** NA NA
2000 0.74 (0.03) 0.77 *** 0.76 * 0.77 *** 0.79 (0.01) 0.78 *** 3.86 (3.68) 1.71 *** NA NA
5000 0.75 (0.03) 0.79 *** 0.76 0.79 *** 0.79 (0.01) 0.79 4.91 (7.41) 1.51 *** NA NA

10000 0.75 (0.02) 0.85 *** 0.76 . 0.85 *** 0.80 (0.01) 0.79 *** 1.74 (1.70) 1.16 * NA NA
20000 0.76 (0.02) 0.86 *** 0.77 . 0.86 *** NA NA 0.66 (0.08) 1.02 ** NA NA

Within Alg. 2, we make the contesting process terminate with the
DAGs chosen through this automatic procedure. We aimed at check-
ing whether fixing a plausible, though not humanly validated, DAG
can lead to better predictive performance and whether the level of
improvement depends on data size.

As reported in Table 1, the predictive performance of the injected
NNs can be up to 2.4x better than CASTLE (California with N=100).
AUC for the Adult dataset is consistently above CASTLE (up to 13%
and significantly so for most of the sample sizes) while using only
∼20% of the relationships that the “unconstrained” CASTLE net-
work uses.4 Similarly, for the Boston data, injection reduces edges
by ∼75% while significantly improving performance. For the Cali-
fornia dataset, the MSE is significantly better for all sample sizes but
the biggest and N = 500 where there is not significant difference
in the means. However, the reduction of computed DAG’s edges is
∼40%. Finally, for the HELOC dataset the AUC for the injected NN
is not significantly lower than CASTLE in half the cases, and by a
maximum of 1%, but with a much sparser NN: the amount of first
layer’s weights is only 15% of the unconstrained NN. This stark re-
duction will have included some useful relationships that, with some
refinement, could be reintroduced to improve performance. We note
that, by minimality [23] or parsimony [29], when the performance
stays equal, a modeller should prefer the sparser, more parsimonious
model. Overall, simulating the use of Alg. 2 without prior knowledge
produced parsimonious NNs with an average 75% less connections
in the input layer. Moreover, predictive performance generally im-
proves significantly or, in the worst case, worsens by at most 1%,
with no clear distinction by sample size.

Note that, for this first scenario, our strategy for choosing the
DAGs to inject is purely mechanic. The adopted strategy is meant
to gauge impact on predictive performance without a qualitative as-
sessment of the validity of domain specific causal assumptions, a task
that SMEs should carry out. We envisage this strategy as a useful
starting point in the absence of causal knowledge defined a priori.
However, in real life applications, we intend the use of Alg. 2 by a
panel of SMEs, iteratively assessing intermediate outputs to refine
the NN in light of previous experiments, leveraging their experience
and knowledge of the modelling task, while learning more about it.

Next, we introduce two experiments providing examples of how
Alg. 2 can work in a human-AI collaboration setting, with SMEs
constraining and contesting DAGs computed by NN. We run these
experiments only on the Adult dataset, as it contains some features,

4 This reduction matches the reduction in NNs’ weights at the input layer.

notably race, sex, age and native-county, that lend themselves to the
construction of common sense causal assumption by lay users e.g.,
sex cannot be caused by age. This way we avoid formulating domain
specific assumptions while providing a tangible example application.

5.1.2 Partial a priori Knowledge

In this experiment we build a very simple, yet intuitive, partial input
graph Gp for the Adult dataset to constrain the NN to respect the
following assumptions (reflected in the adjacency matrix in Fig. 2):

● race, sex, age, native-county cannot be caused by any feature, i.e.
these features cannot have incoming edges. As a result, columns
2 to 5 of the adjacency matrix in Fig. 2 are blanked (wik = 0);

● occupation and hours-per-week cannot cause fnlwgt (demograph-
ics index), education, education-num, relationship and marital-
status; the respective cells in Fig. 2 are blanked;

● the target (income > USD50K) cannot cause any feature and
capital-gain, capital-loss can only affect the target; rows 1, 13
and 14 in Fig. 2 are blanked.

Note that some of these assumptions could easily be confuted, e.g.,
by arguing that the target can cause features, such as capital-gain
and loss. We adopt these assumptions only to illustrate the effects on
the adjacency matrix and to simulate a scenario whereby the mod-
eller is testing whether the algorithm finds relationships in the data
that help the prediction task. As in [23], we believe that the oppor-
tunity to extract and enforce such assumptions, or simply talk about
them, has the potential to make models more transparent, robust and
representative of causal mechanisms of the world.

Figure 2: Input graph Gp, as partial causal knowledge for the Adult
dataset, in the form of an adjacency matrix W. Blue represents
edges; missing edges in white (hard constraints).

We report the AUC of the NN injected with the graph in Fig. 2
in Table 1, Partial column. The “causal constraints” result in perfor-
mances generally not significantly different from CASTLE, but with
a computed DAG that has about a half the edges of the unconstrained
NN (∣E∣ = 116 vs ∣E∣ = 210). On the whole, we obtain a sparser
NN, adherent to common-sensical causal knowledge following our
assumptions, whose recommendations are therefore arguably more
understandable and trustworthy, and whose performance is compara-
ble to an unconstrained NN.

5.1.3 Contesting a Computed DAG

Our last experiment on real data aims at showcasing the process
of contesting the causal structure computed and used by the NN,
as afforded by Alg. 2. The experiment starts, as the experiment in
§5.1.1, with no prior knowledge about the problem. We adopt the
same threshold optimisation strategy detailed in Appendix A.1.2 and
chose τ = 0.08. Hence, in the first few runs of Alg. 2 the output of the
revise_graph function would only change the threshold τ . Hav-
ing chosen τ = 0.08, the DAG is extracted and shown to the SMEs,
as in Fig. 3. In this DAG, the target (Income>50K) is deemed to be
causing a few features including sex and age (see purple arrows).

Figure 3: Example of computed DAG for Adult dataset. Cyan nodes
at the top are computed causes for the target (“Income>50K”), edges
coming out of the target are in blue while in purple are the edges into
nodes that cannot be caused (as per basic assumptions in Fig. 2).

This is counter-intuitive from a common sense, let alone causal,
perspective. Thus, the contestation now addresses specific edges in
the computed DAG, and revise_graph produces a DAG Gr that
differs from G in Fig. 3 by the purple edges. Gr is then injected back
into the NN producing the results in Table 1, Refined column: the
NN injected with the DAG refined by means of contesting is not only
more intuitive and adhering to common sense, but presents the same
predictive performance as the NN using non-sensical relationships
and significantly better predictive performance than CASTLE. Ulti-
mately, our Refined NN is 7x smaller in the input layer, adheres to
common sense, and yet it is up to 13% more predictive than an un-
constrained NN.

5.2 Experiments with Synthetic Data

To confirm the results from our case study on real data, we investi-
gate the effectiveness of our proposed method on synthetic data. Our
simulations compare scenario (i) in §5.1.1, where no prior causal
knowledge is available, to scenario (ii) in §5.1.2, where practitioners
do have a set of a priori assumptions. The comparison of scenarios
(i) and (ii) can be seen, in the setting with synthetic data serving as
a proxy for domain experts, as amounting to the scenario in §5.1.3,

where contesting an initial computed DAG corresponds to provid-
ing a priori knowledge in scenario (ii); the only difference lies in the
starting point. We chose to test these scenarios also because of the
easier simulation. The experiments aim at answering the following
questions: (Q1) Does knowledge injection by our algorithms improve
predictive performance? (Q2) Can we reconstruct a DAG, known to
be underpinning the DGP, using Alg. 2? (Q3) How well can Alg. 2
fill the gaps of an input graph contributing only partial knowledge?
(Q4) How does knowledge injection performance change in different
data size regimes? (Q5) How resilient are our algorithms to noise?

Using Alg. 2, we represent the Expert Knowledge with an input
graph G encapsulating a priori partial causal knowledge among a
subset of the features fed to the NN. In the experiments shown in
Fig. 4 we inject a 20% random sample of the total amount of edges
in the true DAG; experiments with 10% and 50% of DAG edges in-
jected are reported in Appendix A.2.1. Once the known edges are
selected, the entries of the edges representing the opposite direction
in the adjacency matrix W are set to 0, e.g. Xi → Xj is selected as
known, then (i, j) ∈ E and wji = 0.

Synthetic Data Generation. We generate synthetic data adhering
to a series of randomly generated DAGs of different sizes, using
the methodology of [16].5 The generated synthetic DAGs and data
vary across three main dimensions: number of nodes in G (∣V ∣ ∈
{10,20,50}), number of edges (∣E∣ = ∣V ∣ ∗ e, where e ∈ {1,2,5}),
and data size (N = ∣V ∣ ∗ s, where s ∈ {50,100,200,300,500}). In
the remainder, we refer to s as proportional sample size.

Evaluation Metrics. We use average and Standard Deviation (Std)
of Mean Squared Error (MSE) for the evaluation of predictive per-
formance for questions Q1, Q4 and Q5. For the evaluation of recon-
struction accuracy for questions Q2, Q3 and Q5 we use the distribu-
tion of the percentage of edges that match those in the true DAG. We
run each scenario, involving one of the combinations of ∣V ∣, e and s,
10 times and report the distribution of results as a boxplot in Fig. 4,
in comparison with the baselines detailed next. As in the experiments
with real data, differences in means are tested with a t-test.

Baselines. CASTLE’s predictive performance has been compared
to the main NNs’ regularisation methods in the literature [16], pro-
viding the best performance for both classification and regression
tasks on both synthetic and real data. Hence, for prediction, our base-
line is a well-performing regularised NN: CASTLE. However, CAS-
TLE alone cannot be used as a baseline for reconstruction accuracy
but the adjacency matrix extracted from CASTLE using Eq. 1 pro-
vides a useful starting point. Our baseline is thus built by: using CAS-
TLE’s weights Θ to compute WΘ according to Eq. 1 and then Eq. 3
to derive a DAG G = gτ(WΘ). We call this method CASTLE+.

The differences between CASTLE+ and our Alg. 1 are as follows.
For CASTLE+ we let CASTLE run unconstrained and only after
training we extract an adjacency matrix (Eq. 1) and transform it into
a DAG (Eq. 3 with an appropriate choice of threshold τ). Instead,
our method for injecting the DAG involves feeding a graph into
the NN so that a mask is applied and only the non-masked weights
are optimised. For an illustration of the procedure as to how we
inject causal knowledge through masking, refer to §3. Note that
CASTLE+ amounts to using Alg. 1 with a complete graph Gp. In the
experiments we use the value of τ that produced the lowest number
of mismatches, for each of CASTLE+ and our method.

5 For details refer to Appendix B.1 of [16]. Note that we standardise all fea-
ture values in the generated data to mean 0 and std 1. Thus, following [24],
our results can be regarded as conservative estimates of reconstruction ac-
curacy.

Figure 4: Reconstruction Accuracy and MSE when changing s = N/∣V ∣ ∈ {50,100,200,300,500}, the sample size N proportional to the
number of nodes ∣V ∣ ∈ {10,20,50} in the causal DAG G. Darker (grey or blue) colors refer to the no-noise scenario, whereas lighter colors
refer to the scenario with noise. The values are an average over 10 runs for each combination of ∣V ∣, s and e = ∣E∣/∣V ∣ ∈ {1,2,5}. The boxplots
(left y axis) show Min/Max/Median (solid lines) and Mean/Std (dashed lines) of the reconstruction accuracy. The bottom bars (right y axis)
show the MSE (std). The solid horizontal lines spanning across each of the pairs of boxplots are the re-based value of the CASTLE+ mean
to account for the advantage that our Injection methodology knows 20% of the edges. If the mean of Injected is above/below the level of the
horizontal lines, the average increase in reconstruction accuracy is more/less than proportional to the amount injected.

Simple DGP. The results for this scenario are given in darker col-
ors in Fig. 4, where we show two metrics: the predictive performance
(MSE) with the bars at the bottom of the figure; and the distribu-
tions of reconstruction accuracy through the boxplots at the top of
the figure. The results presented vary across one of the three di-
mensions mentioned earlier, namely the proportional sample size s.
Analysis of the changes over the other two dimensions (e = ∣E∣/∣V ∣
and ∣V ∣) are left to Appendices A.2.2 and A.2.3. From Fig. 4 we
can observe that the predictive performance improves with injection
for small data regimes (up to 15% for s < 200) while it is not af-
fected for bigger proportional sample sizes. However, none of the
effects are statistically significant. Also for reconstruction accuracy
the biggest gains are again observed in the low data scenario. The
proportional gains in the number of correct edges is greater than the
proportion of edges injected by up to 10%, as represented by the
mean of the boxplots lying above the gray longitudinal lines span-
ning across them. The increases for s = 50 and s = 100 result to be
statistically significant at the 5% level (t(178) = 2.226, p = 0.027
and t(178) = 2.464, p = 0.015, respectively). For the other s, no
significant differences are observed. With these experiments we can
answer questions Q1 through Q4: Alg. 1 can improve DAG recon-
struction (Q2) as well as fill in gaps in partial causal knowledge (Q3),
with no decrease in prediction performance (Q1), but only for low
data regimes (Q4).

Noisy DGP. To assess the robustness of Alg. 1 to noise, aiming
at answering question Q5, we add to the training data a number of
features amounting to 20% of the number of nodes in the DAG used
to generate the data. These additional “noisy” features are generated
out of a standard normal distribution and have no links to the other
features in the data. Results are again presented in Fig. 4 for ease of
comparison with the no-noise scenario. As visible from the bottom
bar charts, the MSE for the target feature Y stays effectively the same
across the different proportional data sizes (no significant differences
in mean). Also the reconstruction accuracy (top boxplots) appears not
to be affected at all (again, no significant differences in mean). This
is in line with the results presented in [16]. We can conclude that our
algorithm is resilient to noise with regard to both reconstruction and
predictive performance (Q5).

6 Conclusion
The proposed methods represent a principled approach to fitting neu-
ral networks (NNs): we leverage knowledge injection in the form of
causal graphs to empower technical experts to contest NNs, based on
the structural assumptions discovered from the data. We propose two
algorithms to deliver contestable NNs: the first unlocks contestabil-
ity by allowing networks to take feedback in the form of causal graph
injection; the second uses computed causal graphs to elicit feedback
from experts, so that they can contest the data-driven causal graph
and inject their causal views into the NN. We apply our algorithms
to real financial datasets demonstrating how they can yield very par-
simonious, hence more interpretable and easier to debug, NNs, while
either significantly improving or losing very little predictive perfor-
mance. Finally, we demonstrate, through empirical results on syn-
thetic data, that knowledge injection, as afforded by our method, gen-
erally improves causal discovery in low data regimes, despite noise.
We used predictive performance to assess the viability of our method
for prediction tasks and found that knowledge injection can produce
similar or better performing NNs, but with the added confidence of
being able to explore the relationships used in the predictions.

We envisage interesting lines of future work including: exploring
the indirect causal effects that take place in the hidden layers of our
injected NN; introducing Bayesian learning weight updates, e.g. as
in [20], to improve our method’s human-AI collaboration capabilities
through uncertainty quantification. Further, we would like to equip
our method with the capability to aggregate independent views of
several experts into a consistent causal graph, similar to Alrajeh et
al. [2]’s proposal for causal models, and to allow the enforcement
of the presence of causal direction on top of the absence thereof.
Our proposed method not only produces contestable NNs, but also
improves their interpretability and, we believe, their trustworthiness.
This is because SMEs are called to examine computed causal graph
and provide feedback that the NN is guaranteed to respect: we will
explore this angle in future work. Finally, we plan to explore further
the human-in-the-loop debugging capabilities of our method, espe-
cially for high-stakes decision models, and conduct user studies on
the propensity and efficacy of SMEs in understanding and contesting
model outputs depending on presentation and interaction modalities.

Acknowledgements
We would like to thank Ruben Menke, Torgunn Ringsø, Antonio
Rago, Francesco Leofante, Mark Somers and all the anonymous re-
viewers for the helpful feedback on earlier version of the paper.
Russo was supported by UK Research and Innovation (grant number
EP/S023356/1), in the UKRI Centre for Doctoral Training in Safe
and Trusted Artificial Intelligence (www.safeandtrustedai.org). Toni
was partially funded by the ERC under the EU’s Horizon 2020 re-
search and innovation programme (grant agreement No. 101020934)
and by J.P. Morgan and by the Royal Academy of Engineering under
the Research Chairs and Senior Research Fellowships scheme.

References
[1] Marco Almada, ‘Human intervention in automated decision-making:

Toward the construction of contestable systems’, in Proc. ICAIL,
(2019).

[2] Dalal Alrajeh, Hana Chockler, and Joseph Y Halpern, ‘Combining ex-
perts’ causal judgments’, Artificial Intelligence, (2020).

[3] Andrea Borghesi, Federico Baldo, and Michela Milano, ‘Improving
deep learning models via constraint-based domain knowledge: a brief
survey’, arXiv:2005.10691, (2020).

[4] Jawad Chowdhury, Rezaur Rashid, and Gabriel Terejanu, ‘Evalua-
tion of Induced Expert Knowledge in Causal Structure Learning by
NOTEARS’, in Proc. ICPRAM, (2023).

[5] Anthony C Constantinou, Zhigao Guo, and Neville K Kitson,
‘The impact of prior knowledge on causal structure learning’,
arXiv:2102.00473, (2021).

[6] FICO. Fico xml challenge found at community.fico.com/s/xml, 2017.
[7] Atticus Geiger, Zhengxuan Wu, Hanson Lu, Josh Rozner, Elisa Kreiss,

Thomas Icard, Noah Goodman, and Christopher Potts, ‘Inducing causal
structure for interpretable neural networks’, in Proc. ICML, (2022).

[8] Clark Glymour, Kun Zhang, and Peter Spirtes, ‘Review of causal dis-
covery methods based on graphical models’, Frontiers in genetics, 524,
(2019).

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning,
MIT Press, 2016.

[10] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, ‘Explaining
and harnessing adversarial examples’, in Proc. ICLR, (2015).

[11] Anirudh Goyal and Yoshua Bengio, ‘Inductive biases for deep learn-
ing of higher-level cognition’, Proceedings of the Royal Society A,
478(2266), (2022).

[12] David Harrison and Daniel Rubinfeld, ‘Hedonic housing prices and the
demand for clean air’, Journal of Environmental Economics and Man-
agement, (1978).

[13] Clément Henin and Daniel Le Métayer, ‘Beyond explainability: justifi-
ability and contestability of algorithmic decision systems’, AI & SOCI-
ETY, 1–14, (2021).

[14] Daniel N Kluttz, Nitin Kohli, and Deirdre K Mulligan, ‘Shaping our
tools: Contestability as a means to promote responsible algorithmic de-
cision making in the professions’, in Ethics of Data and Analytics, 420–
428, Auerbach Publications, (2022).

[15] Ron Kohavi et al., ‘Scaling up the accuracy of naive-bayes classifiers:
A decision-tree hybrid.’, in Proc. KDD, (1996).

[16] Trent Kyono, Yao Zhang, and Mihaela van der Schaar, ‘Castle: Regular-
ization via auxiliary causal graph discovery’, in Proc. NeurIPS, (2020).

[17] Piyawat Lertvittayakumjorn, Lucia Specia, and Francesca Toni, ‘Find:
Human-in-the-loop debugging deep text classifiers’, in Proc. EMNLP,
pp. 332–348, (2020).

[18] Piyawat Lertvittayakumjorn and Francesca Toni, ‘Explanation-based
human debugging of nlp models: A survey’, Transactions of the As-
sociation for Computational Linguistics, 9, 1508–1528, (2021).

[19] C Meek. Causal inference and causal explanation with background
knowledge in uncertainty in artificial intelligence 11, 1995.

[20] Vikram Mullachery, Aniruddh Khera, and Amir Husain, ‘Bayesian neu-
ral networks’, arXiv:1801.07710, (2018).

[21] R Kelley Pace and Ronald Barry, ‘Sparse spatial autoregressions’,
Statistics & Probability Letters, 291–297, (1997).

[22] Judea Pearl, Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1988.

[23] Judea Pearl, Causality, Cambridge University Press, 2 edn., 2009.
[24] Alexander Reisach, Christof Seiler, and Sebastian Weichwald, ‘Beware

of the simulated dag! causal discovery benchmarks may be easy to
game’, in Proc. NeurIPS, (2021).

[25] Ribana Roscher, Bastian Bohn, Marco F Duarte, and Jochen Garcke,
‘Explainable machine learning for scientific insights and discoveries’,
Ieee Access, 8, 42200–42216, (2020).

[26] Cynthia Rudin, ‘Stop explaining black box machine learning models
for high stakes decisions and use interpretable models instead’, Nature
Machine Intelligence, 206–215, (2019).

[27] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian J. Goodfellow, and Rob Fergus, ‘Intriguing properties
of neural networks’, in Proc. ICLR, (2014).

[28] Andrea Aler Tubella, Andreas Theodorou, Virginia Dignum, and
Loizos Michael, ‘Contestable black boxes’, in Proc. RuleML+RR,
(2020).

[29] Joachim Vandekerckhove, Dora Matzke, and Eric-Jan Wagenmakers,
‘Model comparison and the principle of parsimony’, The Oxford hand-
book of computational and mathematical psychology, 300, (2015).

[30] Laura Von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan
Georgiev, Sven Giesselbach, Raoul Heese, Birgit Kirsch, Julius Pfrom-
mer, Annika Pick, Rajkumar Ramamurthy, et al., ‘Informed machine
learning–a taxonomy and survey of integrating prior knowledge into
learning systems’, IEEE Transactions on Knowledge and Data Engi-
neering, 35(1), 614–633, (2021).

[31] Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma,
and Liang He, ‘A survey of human-in-the-loop for machine learning’,
Future Generation Computer Systems, (2022).

[32] Cheng Zhang, Kun Zhang, and Yingzhen Li, ‘A causal view on robust-
ness of neural networks’, in Proc. NeurIPS, (2020).

[33] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing,
‘Dags with no tears: Continuous optimization for structure learning’, in
Proc. NeurIPS, (2018).

www.safeandtrustedai.org

Appendices

A Further Details for Experiments

For all experiments6 we choose 3 hidden layers (M = 3) of sizes
2 ∗ ∣V ∣,2/3 ∗ ∣V ∣,2 ∗ ∣V ∣ respectively, with ReLU activations. Ex-
periments with smaller networks are provided for synthetic data in
§A.2.4. All networks are initialized and seeded identically and use
the Adam optimizer with a learning rate of 0.001 for a maximum of
1000 steps (T). A patience (Ts) of 50 steps on the loss on the val-
idation set is used to stop training. Results for the synthetic dataset
are then reported for 10 randomly generated DAGs. For the real data
experiments, given the hyper-parameters optimisation of the thresh-
old τ , we have used 5-fold nested cross validation and the results
reported are the average over the resulting 25 runs.

A.1 Experiments with Real Data

Here we provide additional details for the experiments in §5.1: we
start from the datasets to then cover the optimisation of the threshold
τ , part of experiment (i) in §5.1.1.

We report details for the datasets in Table 2. For the regression
tasks, with Boston [12] and California Housing [21], we used the
data out of the box from scikit-learn7. For the classification tasks,
with HELOC8 [6] and Adult Income9 [15], we used pre-processed
data. Additionally, for Adult, we sampled 20000 observations and we
balanced the proportion of positive and negative examples in target
feature to 50-50 (from 25-75).

Table 2: Real-world dataset details. Type is Regression (R) for real-
valued target or Classification (C) for binary target.

Dataset Sample Size Features Type
Boston Housing (BH) 506 14 R
California Housing (CH) 16512 8 R
Home Equity Line Of Credit
(HELOC) 7844 23 C

Adult Income (IN) 48842 14 C

A.1.1 Details on Statistical Tests

Here we report the details to reproduce the observed significance lev-
els reported in Table 1. Table 3 reports the means and standard devia-
tions for all the experiments. As mentioned in the main text, we used
a two-tailed, two-sample t-test for difference in means. Each sam-
ple was made up of 25 runs within a 5-fold nested cross validation
resulting in 48 degrees of freedom for the Student’s t-distribution.
The t-statistics and associated p-values are reported in Table 4. Note
that for California and Boston the homoscedasticity (equal variance)
assumption was not satisfied (after testing the difference in variance
with an F-test) hence we used the heteroscedastic t-test.

6 Our code is available at: https://github.com/briziorusso/
causal-injection-FFNN/tree/main

7 https://scikit-learn.org/stable/datasets/toy_dataset.html
8 Data and pre-processing mapping (keys.csv) is downloadable from our

repo at https://github.com/briziorusso/causal-injection-FFNN/tree/main/
data/fico/;

9 Data and pre-processing mapping are from Penn Machine Learning
Datasets repository at https://github.com/EpistasisLab/pmlb/blob/master/
datasets/adult/

(a) Adult Income

(b) FICO HELOC

(c) Boston Housing

(d) California Housing

Figure 5: Threshold τ optimisation for experiment in §5.1.1. Here
τ < 0 corresponds to the application of “unconstrained” CASTLE
[16]. Chosen thresholds are in bold on the x-axis. The number of
edges and the predictive performance of the network injected with
the DAG derived with the chosen τ are reported on the y-axes.

A.1.2 Threshold Optimisation.

Here we provide details on the optimisation of the threshold τ to
chose a DAG without having to make qualitative causal judgments,
as part of the experiment in §5.1.1. The results for all datasets are
in Fig. 5. The optimisation runs through several thresholds and com-
pares the number of edges (red) and the appropriate predictive per-
formance metric (blue) when increasing the threshold τ , along the x
axis, so that more and more edges are masked. As expected, the num-
ber of edges decreases monotonically for bigger thresholds while
MSE/AUCs are the trends of interest.

As visible in Fig. 5a for the Adult dataset, τ = 0.08 keeps the
best AUC, while reducing the number of edges by more than 50%
compared to τ = 0. Increasing τ produces small gains in parsimony
(lower ∣E∣) but starts to reduce performance. The same applies to the
FICO HELOC data in Fig.5b, where we select τ = 0.004, before the
AUC starts to decrease. For both datasets, valid alternative choices
are τ = 0.1 and 0.01, respectively, but we preferred a lesser wors-
ening of performance for small gains in parsimony. For the Boston
dataset in Fig.5c, we select τ = 0.13 as the MSE thereafter increases
significantly. Finally, California (Fig.5d) shows a different scenario:

https://github.com/briziorusso/causal-injection-FFNN/tree/main
https://github.com/briziorusso/causal-injection-FFNN/tree/main
https://scikit-learn.org/stable/datasets/toy_dataset.html
https://github.com/briziorusso/causal-injection-FFNN/tree/main/data/fico/
https://github.com/briziorusso/causal-injection-FFNN/tree/main/data/fico/
https://github.com/EpistasisLab/pmlb/blob/master/datasets/adult/
https://github.com/EpistasisLab/pmlb/blob/master/datasets/adult/

injecting always hurts predictive performance. We chose τ = 0.05
which has the lowest MSE. However, as visible in Table 1 in the main
text, the worse MSE is not observed for injected NNs on smaller sam-
ple sizes.

A.2 Parameter Study for Synthetic Data

In §5.2 we report results for a fixed number of edges injected (20%).
Here we provide comparisons of performance for different percent-
ages of edges injected (§A.2.1). Moreover, the results reported in
Fig. 4 show variation wrt one of the three dimensions considered
when generating the random DAGs and data, namely, proportional
sample size (s = N/∣V ∣). Here, we report additional results for the
other two dimensions: number of nodes ∣V ∣ (§A.2.3), and propor-
tion of edges over nodes e = ∣E∣/∣V ∣ (§A.2.2). Finally, we report
a comparison for network size (§A.2.4). The results of this section
corroborate the ones presented in §5.2.

A.2.1 Percentage of Known Edges.

In Fig. 6 we vary the proportion of edges injected (10%, 20% as
in Fig.4, and 50%). As visible, injecting 50% of edges never pays
off proportionally, i.e. the average reconstruction accuracy, although
higher than CASTLE+, generates less of an increase than “rebased”
CASTLE+ (solid horizontal lines). On the other hand, the reconstruc-
tion accuracy when injecting 10% of the DAGs is always more than
proportional to the injected amount. Most of the gains are recorded
for denser DAGs (e ∈ {2,5}) when reconstruction is generally more
difficult, as shown by the decreasing overall trend.

Figure 6: Reconstruction Accuracy and MSE when changing the pro-
portion of edges over nodes (see §A.2.2). The amount of known
edges injected is 10%, 20% (as in the paper, see Fig.4) and 50%
(see §A.2.1).

A.2.2 Number of Edges in the DAG

The effect of changing the proportion of edges per node (e = ∣E∣/∣V ∣)
is presented in Fig. 6 (where CASTLE+ vs Injected 20% is the sce-
nario shown in Fig.4 in the main text). Results show that the sparser
the DAG (the smaller e) the better the performance of our algo-
rithm, achieving reconstruction accuracy averaging at around 75%
for e = 1. For e = 2 the average drops to the average level across all
proportional sample sizes s, while increasing e further, to 5, results
in averages dropping to less then 40%, comparable to the effect of
having only 50 observations per node (s = 50, Fig.4). Overall, the
denser the DAG, the worse the performance of both CASTLE+ and
our algorithms.

Figure 7: Reconstruction Accuracy and MSE when changing the
number of nodes in the DAG underpinning the data (see §A.2.3) and
the numbers of layers (M=3 in Fig.4, see §A.2.4).

A.2.3 Number of Nodes in the DAG

MSE and reconstruction accuracy results when changing ∣V ∣ are
shown in Figure 7 (M = 3 correspond to the main scenario, as in
Fig.4). We can observe that the performance varies significantly for
increasing DAG sizes. For ∣V ∣ = 10, both CASTLE+ and our method
show better reconstruction accuracy than the average across s (in
Fig. 4). For ∣V ∣ > 10, however, we observe a significant drop in over-
all performance for CASTLE+, whereas our method suffers less from
the increased size of the DAG.

A.2.4 Network Size

In Fig. 7, jointly with the analysis on the number of nodes, we
show a comparison of 3-layers networks (used for the experiments
in §5.2) with smaller networks of one single hidden layer and an
amount of neurons of 3.2 times the number of input features (i.e.
M = 1, h = (d + 1) ∗ 3.2). Interestingly, as visible from the bottom
bar charts, the MSE for the target variable Y generally improves with
smaller networks, while the same change worsens reconstruction ac-
curacy. Better prediction does not always couple with better causal
discovery.

Table 3: MSE or AUC (std) for regression and classification, respectively, across different sample sizes of the training data (N).

CLASSIFICATION (Metric: AUC) REGRESSION (Metric: MSE)
Adult HELOC California Boston

Data CASTLE Injected Partial Refined CASTLE Injected CASTLE Injected CASTLE Injected

100 0.67 (0.03) 0.69 (0.04) 0.66 (0.02) 0.69 (0.04) 0.75 (0.02) 0.74 (0.04) 7.05 (12.81) 2.94 (2.63) 112.04 (91.06) 86.17 (13.75)
500 0.72 (0.04) 0.74 (0.02) 0.71 (0.02) 0.74 (0.02) 0.79 (0.01) 0.78 (0.01) 2.33 (1.39) 2.25 (1.07) 21.95 (6.84) 20.45 (5.12)

1000 0.75 (0.03) 0.76 (0.03) 0.74 (0.03) 0.76 (0.02) 0.78 (0.01) 0.78 (0.01) 2.96 (4.12) 1.68 (1.14) NA NA
2000 0.74 (0.03) 0.77 (0.01) 0.76 (0.03) 0.77 (0.02) 0.79 (0.01) 0.78 (0.01) 3.86 (3.68) 1.71 (0.57) NA NA
5000 0.75 (0.03) 0.79 (0.03) 0.76 (0.02) 0.79 (0.03) 0.79 (0.01) 0.79 (0.01) 4.91 (7.41) 1.51 (0.62) NA NA

10000 0.75 (0.02) 0.85 (0.01) 0.76 (0.02) 0.85 (0.01) 0.80 (0.01) 0.79 (0.01) 1.74 (1.70) 1.16 (0.31) NA NA
20000 0.76 (0.02) 0.86 (0.01) 0.77 (0.02) 0.86 (0.01) NA NA 0.66 (0.08) 1.02 (0.35) NA NA

Table 4: t-statistic (p-value) comparing each column of Table 3 against the respective CASTLE baseline for each dataset and sample size.

Adult HELOC California Boston
Data Injected Partial Refined Injected Injected Injected

100 2.000 (0.051) 1.387 (0.172) 2.000 (0.051) 1.118 (0.269) 1.571 (0.123) 1.405 (0.167)
500 2.236 (0.030) 1.118 (0.269) 2.236 (0.03) 3.536 (0.001) 0.228 (0.821) 0.878 (0.384)

1000 1.179 (0.224) 1.179 (0.244) 1.387 (0.172) 0.000 (1.000) 1.497 (0.141) NA
2000 4.743 (0.000) 2.357 (0.023) 4.160 (0.000) 3.536 (0.001) 2.887 (0.006) NA
5000 4.714 (0.000) 1.387 (0.172) 4.714 (0.000) 0.000 (1.000) 2.286 (0.027) NA

10000 22.361 (0.000) 1.768 (0.083) 22.361 (0.000) 3.536 (0.001) 1.678 (0.100) NA
20000 22.361 (0.000) 1.768 (0.083) 22.361 (0.000) NA 5.014 (0.000) NA

	Introduction
	Related Work
	Preliminaries
	Methodology
	Empirical Evaluation
	Case Study with Real Data
	No a priori Knowledge
	Partial a priori Knowledge
	Contesting a Computed DAG

	Experiments with Synthetic Data

	Conclusion
	Further Details for Experiments
	Experiments with Real Data
	Details on Statistical Tests
	Threshold Optimisation.

	Parameter Study for Synthetic Data
	Percentage of Known Edges.
	Number of Edges in the DAG
	Number of Nodes in the DAG
	Network Size

