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CRA data*
WHAT INFORMATION DO BANKS USE TO ASSESS YOUR CREDIT 

WORTHINESS?

320/05/2022*MATERIAL FROM RUSSO, 2019
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Origination Strategy

Reject Inference

Customer Management Strategy

Regulatory Impacts

New Products
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Tasks that Use Extensive CRA Data
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Data Analysis – Quantity & Types

Good data quality variables
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Data Analysis – Cleansing
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Modelling

Worst Status Last 6 Months 1.22 CUG y
Number of Delinquent Accounts 1.22 CUG y

Value of Delinquent Accounts 1.22 CUG maybe

Months Since Delinquency 1.19 CUG y

Value of Unsecured Delinquent Debt 1.18 CUG no

Number of Unsecured Delinquencies 1.18 CUG Y

Time Since Most Recent Default 1.05 CUG Y

Value of Defaults 1.03 CUG no

Number of Defaults 1.03 CUG Y

Months Since Mortgage Default 1.00 CUG y

Value of Mortgage Default 0.99 CUG maybe

Number of Mortgage Defaults 0.99 CUG y

Confirmed at Address 0.31 ER y

Number of Judgements 0.28 Public y

Tine Since Judgement 0.28 Public y

Time on ER at Current Address 0.27 ER y

Number of All Public Judgement Records 0.26 Public y

Time Since Bankruptcy 0.26 Public y

Value of Bankruptcy 0.26 Public y

Applicant Age 0.25 Internal y

Confirmed at Current Address 0.18 ER y

Worst Status of Active Accounts Last 12 Months 0.92 CUG y

Credit Limit Utilisation 0.92 CUG y

Worst Current Status 0.89 CUG y

Worst Status Last 3 Motnhs 0.83 CUG y

Months Since Most Recent Delinquency 0.78 CUG y
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Data Analysis – Feature Engineering
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WoE = LnOdds(attribute) – LnOdds(population)

IV = AvgGood(WoE) – AvgBad(WoE) 



Traditional Scorecard - Internal & 
CRA Data
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From Regression 
to Machine 
Learning*
CAN WE GET MORE OUT OF THE SAME DATA?

1020/05/2022*MATERIAL FROM RUSSO ET AL, 2019. SEE FROM RISK SCORECARDS WITH MACHINE LEARNING (BRIZIORUSSO.GITHUB.IO)

https://briziorusso.github.io/files/pdf/research/BoE%20Poster%20(printed).pdf
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Variable Importance Comparison
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Regulatory Considerations
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From Transparent 
Machine Learning 
to Causal XAI*
HOW DO WE GO FROM ASSESSING MODELS EX -POST TO MAKING 

SURE THEY LOOK AT THE RIGHT RELATIONSHIPS?

1520/05/2022*MATERIAL FROM RUSSO & TONI, 2022.



Causal Discovery and Injection for 
Feed-Forward Neural Networks

• In finance many hard problems are tackled with models (e.g. fraud, pricing, credit scoring, 

trading, planning etc.)

• Practitioners often have a lot of domain (causal) knowledge

• Regulation is quite strict in requiring model stakeholders to understand and “own” their 

models

• Machine Learning models (e.g. Neural Networks) do not easily allow knowledge integration 

nor interpretation
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Causal Injection into Neural Networks

• Introducing causality into neural networks not only makes them more robust and reliable, but it is also a 
step towards their interpretability
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Formal Set-up
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Supervised Learning setting

• 𝐗 = 𝑋1, … , 𝑋𝑑 ∈ 𝒳 ⊆ ℝ𝑑 (input features)

• 𝑌 ∈ 𝒴 ⊆ ℝ (target)

• 𝒫𝑿,𝑌 joint distribution of input and target (DGP)

• 𝒟 = 𝑿𝑖 , 𝑌𝑖 , 𝑖 ∈ 1,… ,𝑁

• 𝑁 i.i.d samples from 𝒫𝑿,𝑌

• 𝑓𝑌: 𝒳 → 𝒴

• Goal: find መ𝑓𝑌 in ℋ (hypothesis space)

• ℋ too complex → Regularize

Causal framework (Pearl, 2009)

• Causal Structure is a DAG G = ⟨V , E ⟩

• V = {Y , X1, . . . , Xd+1 } the set of vertices

• E ⊆ V × V the set of edges

• vi = fi (pai , ui )
• vi is a value for Vi ∈ V with parents Pai having 

values pai

• fi any function
• ui representing the errors due to omitted factors
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Synthetic Data 
Example

(a) Example DAG from Kyono, Zhang and Schaar
2020.
(b) Adjacency Matrix produced by CASTLE (Kyono, 
Zhang and Schaar 2020) when fitted to the synthetic
data produced following the DAG to the left.
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Causal 
Injection -
The Intuition
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Objective: 

have the network use only the 
relationships contained in the 
DAG i.e. predict each of the 
features using only its parents.



Joint 
Network

Predict the target while 

reconstructing all other input 

features
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Joint 
Network

Predict the target while 

reconstructing all other input 

features
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Joint 
Network

Predict the target while 

reconstructing all other input 

features

Is this input-output relationship 

contemplated in my causal DAG?

FROM CREDIT RISK TO EXPLAINABLE AI RESEARCH - RUSSO FABRIZIO 20/05/2022 22



Joint 
Network

Predict the target while 

reconstructing all other input 

features

NO?

➢“Semantic” Regularization
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Limitations of Proposed Algorithm

• It requires a complete DAG (covering all variables considered in the 

problem and the data)

• Full causal DAG is rare and often impractical to build

• We propose a second algorithm that involves Subject Matter Experts 

(SMEs) providing their input
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Algorithm 2 – Human-AI 
Collaboration
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HCI Causal Injection - Results
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Conclusion

❑ CRA Data is what enables (more) accurate credit worthiness 
assessment in UK

❑ Logistic Regression is to this day the most used technique for its 
interpretability

❑ Other ML algorithms can achieve similar levels of transparency

❑ Statistical relationship is not the same as Causal Relationship

❑ High-stakes decision models should look at both statistical and causal 
relationships
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Questions?
GET IN TOUCH

fabr iz io@imperial .ac.uk

br iz iorusso.g i thub. io
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